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INTRODUCTION

In the analysis of structures in high-speed flight, a classical problem is to

find the temperature distributions and thermal stresses in a skin-stiffener
element (Fig. la); this structure was first treated by Hoff' and then by many

other authors, see for instance.2 '3 .4 In Fig. la the skin and the stiffener are

assumed to be thin, so that in both the heat flow is one-dimensional. If the heat

transfer is assumed to be uniform at the surface of the skin, then only the ele-

ment within the lines A-A of the structure need be considered and this is re-
placed by the mathematical model of Fig. lb. Although in the skin and the frame

of Fig. 2 the section A-A could be derived from the element A-A of Fig. la

by a thickening of the stiffener, the heat transfer conditions of the model of
Fig. lb cannot be made to correspond to those of Fig. 2, because the surface of

the frame is exposed to external heat transfer. Hence the skin reinforced by a
frame is a case not covered by solutions of Hoff's problem. Essentially, the

present case differs from Hoff's case by the boundary condition for heat flow at

the junction of the skin and the stiffener or frame. Because this boundary condi-
tion is more complicated in the present case, the analytical treatment of the

heat flow in the structure is expected to become lengthy. Therefore a restricted
case which appears to be of practical interest, is solved by analytical and by

finite difference methods; of these the latter is in the present case simpler not

only when using high-speed computers, but even when using only a desk cal-
culating machine. The restricted case considered here is one in which the whole

frame has a constant temperature. This is true if the depth of the frame is

relatively small to moderate, or more precisely, if h12/k <<  1 (h = heat transfer

coefficient, 12 depth of the frame, k = thermal conductivity).(5) With the help of

finite difference methods more general eases can be solved, for instance those in
which the external heat transfer depends in an arbitrary way on time and for

which the standard analytical methods are not applicable.
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Fig. 1. Hoff's structure.
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Fig. 2. Present structure.

ANALYTICAL SOLUTION OF THE TEMPERATURE DISTRIBUTION

IN THE RESTRICTED CASE

With uniform heat transfer along the surface of the skin and the frame, only
part A-A of Fig. 2 need be considered. The heat flow is zero on all surfaces
except those exposed to external heat transfer which is assumed to occur by a
law, as that of forced convection. The equation for the heat flow in the skin with
constant temperature across the thickness of the skin, reads:

a2T

	

p cb —aT = sk,  + — T) (1)
Ot ax2

is the thickness of the skin, p, c, k are respectively the density, the specific
heat and the heat conductivity of the material (all assumed constant), h the
coefficient and T1 the reference temperature of the external heat transfer. A
sudden start of motion with constant values of h and T1 is assumed in this sec-
tion. Initially the temperature T1 is constant in the whole structure. Hence

	

t = 0, T = 711 (2)

Assume the same material in the skin and the frame; assume further, uniform
temperature in the frame, then the boundary conditions (see also Fig. 2) are

aT

	

x = (); = 0 (3)
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„ OT ,
x = ;  KO

,
- c2apc—at= — dh(T — Tr) (4)
ax

Introducing nondimensional quantities for the temperature, the distance
along the skin, and the time, there is:

	

= (T — Tf)I (T — Tr); E = 01; T = (kt)/ (pcli 2) (5)

further nondimensional parameters are:

1,4111,2

	

R —
1IS'

—   P
' Sk

Introducing these quantities, one obtains for Eq. (1)

	

ae .92e
a, — P°

the initial condition (2)

r = O 0=1 (8)

and the boundary conditions (3) and (4)




= 0,
ae = 0 and E = 1,

ae 30
R -577. =- — Le 


Equation (7) can be simplified by a well-known transformation:"

0 =  Ue-Pr

Now the difkrential Eq. (7) becomes:

the initial condition (8)

T = 0, u=1 (12)

and the boundary conditions (9)

au au au
= 0, — = = 1, -- R — = — 1,*(1 (13)

a,

where

L* = L — PI? (14)
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Next, a Laplace transformation is applied to Eqs. (11) and (13) observing
Eq. (12). If  ft  is the transform of u and if  p  is the Laplace-transform variable,

one obtains for Eq. (11)

- pu + 1 =  0

	

_
(15)

and for Eq. (13):

(tit-= o , = 0; = 1,  R(pu 1) = L*ft  (16)

A solution of Eq. (15) with the boundary conditions [Eq. (16)1 is:

	

ft  =
1L*co§h  p

	

PP sinh Rp  cosh N5  L*  cosh '1/2)
(17)

and using the inversion therorem the solution for  u  becomes:6

1
U =

27rt

ri L* cosh -Vp
_lePrdp

(18)

-\/LP P  i)  sinh  N/i) Rp  cosh NfP  L*  cosh N/p

The integration is to be performed in the complex p-plane along a line from
- i 00 to -y I , where 7 is chosen so that all the singularities of the ex-

pression in the brackets [ 1 in Eq. (18) lie to the left of that line. The integral

is evaluated with the help of the calculus of residue.6 The integrand becomes in-
finite at  p =  0 and at values of  p  satisfying

sinh -Vp  Rp  cosh N/p  L*  cosh \/p = 0 (19)

This equation has no conjugate complex roots, as can be shown by methods given

in Ref. 6. For real values of  p =  X' one obtains from Eq. (19):

X tanh X = — RX2 — L* (20)

This equation has only one root X = X0 provided  R  and  L*  have suitable values.
For purely imaginary values of  Arp = IX,  one obtains from Eq. (19)

X tan X =  L* — RX2  (21)

The roots can be obtained in the usual way from the intersections of the curves
z = X tan X and z =  L* —  RX2.

There are an infinite number of discrete roots. The first term of the integrand
in Eq. (18) yields 1 as a contribution 10 the integral. The residue at  p = ()  of
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the second term yields — 1; with the contribution of the other residues one
obtains finally:

2L*ex0', cosh Xo
u =

[(L* RX02)2 — X02(1 + R) + L*1 cosh Xo
 

+ 2L*C'' cos X.EE
[(L* — RX.2)2 + X.2(1 R) + L*1 cos X.

where Xo is the root of Eq. (20) and x„(n I) are the roots of Eq. (21). With
the help of Eq. (10) one obtains finally from Eq. (22):

2L*C(P-x°')' cosh Xot
=

[(1,* + RX02)2 — X02(I  R) + 1:*]cosh Xo



2L*e-(+P» cos X.E+E

	

[L* — RX.2)2 + X.2(1 R) + L*1 cos X.

Equation (23) gives the temperature distribution in the skin and the temperature
of the frame follows also from Eq. (23) by putting there t = 1.

THERMAL STRESSES AND THERMAL BUCKLING

Only elastic stresses are considered. It is further assumed that the cross
sections of the heated structure remain plane and parallel to the position they
had when the structure was at a uniform initial temperature  T.  No external
forces are assumed to act on the structure. Hence thermal stresses a are given
by a well-known expression'-4 which reads in the present case:

a = Ei3(111 — T,) 0 — °{ f10 clE R(0 )E-1}

1 + R

E is the modulus of elasticity and the coefficient of linear thermal expansion;
both quantities are assumed constant. Compressive stresses are positive in
Eq. (24). For determining critical values for buckling the (approximate) energy
method7 is used and the critical conditions for buckling are obtained from:

	

(5.JUB + Ur) = 0 (25)

where
Dik 1 1 { (3 2w 1 3271)2 2 PM)

Ua = f f 	 + 	2112 0 0
iv 4,2 37)2 4,2

	

32w 32w 2w 2

	

L9E2 3772 	 ) 1}clE dn (26)

6 i 1 (aw )2

UT = — — f f 0- — dd
an
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and S, indicates a differential variation with respect to one or more free param-
eters in w. In these equations (see also Fig. 3) there is:

E(53 
D — = =12(1 — vm2) ' /1' /1'

further, vm is Poisson's ratio, w is the deflection of the skin normal to its surface
and /I is the width of the skin. The extension of the structure in y-direction is
unspecified, hence the variation of the deflection in y-direction is assumed such
as to give minimum values of buckling. In view of what is known from exact
solutions, one chooses for the deflection the expression

w = w0(1 -I- cos 'TO cos (28)

This expression fulfills the boundary conditions for the skin being clamped at

the frame (integral structure), hence at t = ± 1 there is w = 0 and aw/at = 0,


and simply supported at n = ± 1 where w = 0 (see Fig. 3). For convenience put

ir 2D

o- —
Crit 4112o

kerit (29)

If a is constant, the min. critical value for buckling is known from an exact
solution and it is keni, = 6.99 for tk = 0.66. With this value for tk and using the
approximate expression [Eq. (28)] for w, one obtains kenit = 7.26 with the help of
the energy method [Eqs. (2.5) and (26)]. This value for kerit differs by 4% from
the exact one. The energy method gives errors of about the same magnitude
for nonuniform stress distributions corresponding to temperature distributions
of a form encountered in problems similar to the present one.' Consider a
sudden start of motion as above. The stresses are found by introducing the
expression [Eq. (23) 1for the temperature distribution in Eq. (24), and this yields:

a = E (T f — T ,) {430(r) cosh Not + E <NH cos XnE — K (r)} (30)
n= I

w here

= (27)

2L*e-(P x°2>'
410(r) =

[(1,* RX02)2 — X02(1 R) L*] cosh Xo

	

=
[(1,* — RX„2)2 N,,2(1 R) L*1  cos X, • • •

n = 1, 2, ... ,

K \ 	 1 	 poo(r)sinh Xo (13n(r) sin X„]

1 + R XO n=1 X7,

+ 1 R
R  [ (DOHcosh Xo E .43,,(r) cos X„]

n=1

(31)
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Next, the expression [Eq. (30)] for a is introduced in Eq. (26); there Ur is propor-




tional to an expression which is called a buckling parameter and is defined by:

3 -

As = ( T, — T 2 K(T) — 430(r)/0 —E (13„(T)I n]
n-1

where

/0 = [ 3 —+ 

2X 


suil X0
2X0 X02 + 7r2 2(X02 -1-- 47r2)

= X„
sin (X„ — r) sin (X„ r) _L sin (X„ — 27r)

/ —3 sin
2X„ X„ — r X„ + 7r 4(X„ — 2r)

sin (X„ + 27r) 


4(X„ 27r) ' • ' n 2' •

Finally, the condition for buckling becomes, with the help of Eq. ('2.5):

7r211/2 1 	 )
(A,) = 1 +  4

crit — vm2)/120 6 42

where AM is the critical parameter for buckling depending on the geometry and
the properties of the structure, and the buckling pattern.

Equation (34) determines the time when buckling occurs. ik = 0.66 gives the
minimum value of AM and hence in the present case the earliest possible buckling.
It should be remembered that the expression for A, is valid for a sudden start
of motion with constant flight conditions.

THE INFLUENCE OF FLIGHT PARAMETERS

For aeronautical applications the solutions so far found are applicable only
in particular cases. A sudden start of motion may be a good approximation to
real conditions, for instance in the case of a change of flight speed of an aircraft
in horizontal flight, but otherwise, particularly for missiles, this is not true.
Before going into details heat transfer conditions are briefly discussed. Heat
transfer is determined by two quantities h and Tf as follows from the equation:

q = h(T1 — T) (35)

where q is the rate of local heat flow at the surface, h the heat transfer coe fficient

and Tf the friction temperature of adiabatic wall temperature (i.e., equal to the

7

-

to 10

Fig. 3. Dimensions (if and stresses acting on the skin.
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wall temperature T in case q = 0). The radiative heat transfer is neglected here
as would be justified for flight at not-too-high altitudes ( < 20 km) and at not-too-
high speeds (M 5 in the stratosphere). The heat transfer on the surface of
the vehicle is determined by the development and the kind (laminar or turbulent)
of the boundary layer in the external air flow.

The adiabatic wall temperature is for not-too-high speeds (M 6) approxi-
mately given by

Tf= T1(1 +  7 —2 1 n/112) (36)

where 7 = 1.40 (air) is the ratio of the specific heats at constant pressure and
at constant volume, n the recovery factor ( = 0.90 for turbulent and 0.845 for
laminar boundary layers) and M = u/c“ the Mach number (u = the local
velocity of the air flow, c„ the speed of sound) and T1 the static temperature,
all values being taken locally at the outer edge of the boundary layer. Again
for not-too-high speeds, local values may roughly be replaced by ambient values
and u by the flight speed. Changes in altitude affect Tf only through changes in
the ambient temperature which are moderate below the altitude of say, 25
km. However, the flight speed has a strong influence on Tf, for instance for
M > 3 there is roughly Tf

The heat transfer coefficient may be approximated for the present purpose by
flow conditions on an ideal flat plate at zero incidence. Thus for air (Pr = 0.71)
one obtains for not-too-high speeds:9

h = 0.61 pacp uF (M, (Re.) (37)

where pa and cp are respectively the density and specific heat of the air at local
conditions;* T is the wall temperature, F(M, T/ = c1/c1„ ef and cf, the skin
friction coefficient in compressible and incompressible flow respectively and Rer
= ux/ra the Reynolds number with v„ = /2/ pa as the kinematic viscosity,
12 as the dynamic viscosity of air (local values) and x the distance from the
leading edge. In the following assume turbulent boundary layers which are most
important for altitudes below 25 km. Then cf,(Rex) is roughly proportional to
Rex-'16and therefore h N5/6. Thus density has considerable influence on heat
transfer and it in turn depends on the pressure which changes greatly with alti-
tude; further p and F(M, T/T1) depend on the static air temperature T1 which
changes only moderately, as mentioned previously. The overall influence on
h by u is moderate, because F(M, T/T1) (see Ref. 9) and decrease with in-
creasing u. In a typical application h changes about ± 25 percent from a mean
value, if M varies between M = 2 and 4, the altitude being constant. For
flight at constant altitude h may in many cases be assumed to be approximately
constant, but this would not apply if considerable changes in altitude occurred.

At the outer edge of the boundary layer.
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The standard analytical methods' for calculating transient temperatures
allow for variations in  Tf,  but h must be constant.

According to Duhamels theorem one obtains:6

aT - T1 = f 43 (X) 7
O,- [1 - 0,(E,

r - x)] (38)
Jo T

where e,t is the previous solution for a sudden start of motion, X a variable
of integration and ct.(r) =  Tf T 1.This method can be applied to any linear
combination of the temperatures and their spatial mean values, hence also to
the buckling parameter A:

= f 41(X) — [A,(7- — X)] dX (39)
ar

where A,(r) is the buckling parameter for a sudden start of motion as given by
Eq. (32); A, is zero at r = O. If (1D(r) is an arbitrary function of time, the calcula-
tion of A with the help of Eq. (39) becomes in general tedious and is more
conveniently replaced by an approximate method to be discussed later on.

First, consider the particular case

=  BT  (40)

which allows the integral in Eq. (39 ) to be evaluated exactly. With A, from
Eq. (32) the solution is

At (r) = B {A 4(1 -  e-(P  x02)') Ant (I -e  -(P X"2)')f (41)
n=1

with

A 0$ _ 	 (1'0(0) [3 (sinh X0
P Xo2 4 xo + cosh No) -

A.$ - 4).(0)  [3 (sin X.
+ cos X.) -+  4 \

If 43 is an arbitrary function of T, replace cl) in the (1. - r) diagram by a
sequence of straight lines as shown in Fig. 4. At the times r1, r2, . . . , changes

t 1 — O, is zero at r = 0, as required by Duhamels' theorem in the form presented in Ref. 6.
1 kp = 1 kg weight = i.iO5 lb.

'ro  T1 T2

Fig. 4. A variation of Tf — Ti in form of a sequence of straight lines.

1(42)
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in direction occur by amounts (p2, . . . , (p positive when anticlockwise).
Using the principle of superposition the solution for TN-1 < T TN is

N-1

A = E En.A$(7- — ra), B. = S tan (p„ (43)
-= 0

where S is a suitable scale factor. With this procedure the possibilities of stand-
ard analytical methods seem to be exhausted. It is useful to consider now
examples.

EXAMPLES

Consider a light alloy structure with the following thermal properties : pc = 609
kcal/m"C,  k =  0.03 kcal m sec°C, j3 = 23 X 10-6/°C and the mechanical
properties E = 7.2  X 103 kp/mmn, 1 — Pm' = 0.9.

Assume all material properties to be constant up to a temperature of 250°C
and assume Hook's law to be valid up to about a, = 20 kp/mm2. Certain types
of available aluminum alloys correspond approximately to these assumptions,
but these alloys need not necessarily be good materials for structures at elevated
temperatures from an overall engineering point of view. The dimensions of
the structure are: o =  2 mm,  d =  10 mm, /1 = 75 mm and 12 = 15 mm.
Throughout this chapter a constant heat transfer coefficient of h =  0.07
kcal/m2/sec°C is assumed. This value is representative for flight between M =  2
and 4 at 11 km altitude with turbulent boundary layers at the surface of the
vehicle. In seeking solutions by analytical methods the eigenvalues Xo,X1, . . . , are
found from Eqs. (20) and (21) and numerical values for the present example are
given in Table 1. For the present example the critical parameter for buckling is
Am = 77.1°C from Eq. (34). For a sudden start of motion and Tf  Ti =  250°C
(corresponding, for instance, roughly to an increase in Mach number from
M =  0.9 to M =  2.7 at 11 km altitude and turbulent boundary layer flow) Am
is reached at 18.3 sec, according to Eq. (32).§ The critical temperature and stress
distributions according to Eqs. (23) and (24) respectively are given in Fig. 5.
The maximum stress at = 0 is equal to 9.1 kp/mm2 and lies below the assumed
limit for elastic behavior.

Next assume linearly increasing Tf  Ti, i.e., 4) =  Tf  T = BT. Assuming
B =  3120°C (equal to an increase of 27.4°C/sec), buckling would occur at
t =  15 sec and corresponding temperature and stress distributions are given
in Fig. 6.

TABLE I

XOX1X2

1.95991.76804.8762

X3X4X5

7.968611.081614.2055

1 kp = 1 kg weight- =. 2.205 lb.
§ Here and in the following examples an initial temperature of +30°C was assumed.



THIN SKINS SUPPORTED BY FRAMES 879

250 10

T 6

° C kp/mrr12

200 5

Temperatures:

—exact
+Finite difference method

(low-order approximation
in boundary condition)

150 0

100 -5

o 0.25 0.50 0.75 4 1.0

Fig. 5. Case of sudden start of motion.
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100 0

Temperatures:
—exact

Finite difference method:
+Low-order approximation

in boundary condition
• High-order approximation


in boundary condition

50 -5

0.25 0.50 0.75 4 1.0

Fig. 6. Case of linear increase in speed.

0
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As a third example, consider a motion leading to a sequence of two straight
lines in the 43 — T diagram as in Fig. 7; this may roughly correspond to the
flight of a rocket-propelled missile. Assume for (13a linear increase of 500°C

within 4 sec, followed by a decrease in of 25°C/sec. The buckling parameter
A is calculated with the help of Eq. (43) and buckling occurs at  t = 7.45 sec;
the critical temperature and stress distributions are given in Fig. 8.

The critical temperature and stress distributions are rather similar in all
three cases. Due to the more rapid heating in the third case, the temperature
in the skin is uniform over a somewhat wider region than in the other cases.
In all cases the critical stress in the middle of the skin (E = 0) is slightly above
the corresponding value for the isothermal case (.0"crit = const. = 8.5 kp/mm2).

The explanation is that the skin is clamped at the frame and therefore the stresses
in the middle of the skin are mainly responsible for buckling.

500

1.1 - T1

0
0 4 8 12 t sec.

Fig. 7. Variation of friction temperature T f with time (rocket-propelled missile).

200 10

150 5

T
krnm2

100 0

Temperatures:
—exact

Finite difference method:
+Low-order approximation

in boundary condition
*High-order approximation

in boundary condition

50 -5

0  0.25 0.50 0.75 e

Fig. 8. Case of rocket propelled missile with Tf as in Fig. 7, but heat-transfer coefficient


assumed constant.
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CALCULATION OF TEMPERATURE DISTRIBUTIONS BY
FINITE DIFFERENCE METHODS

It is recalled that standard analytical methods for calculating heat flow in
solids are limited to convection-type heat transfer with constant values of h;

further, it appears to be cumbersone to extend these methods from the restricted
cases, so far treated, to general cases with nonuniform temperatures in the
frame.

However, finite difference methods, although approximate in a strictly mathe-
matical sense, are free from the above limitations; besides they are more suit-
able for high-speed computers than analytical methods. Finite difference
methods were introduced about forty years ago, but it is only in the last 15
years that they have received much attention and now at least two books deal
with them from a rigorous mathematical point of view.'°'" There the behavior
of finite difference solutions is investigated in the limiting case of vanishing
differences of the independent variables of space and time; these are Ax and At
respectively in case of one-dimensional heat flow. However, the computational
work increases greatly with decreasing size of Ax and At, while in the case of
applications the required accuracy of the solutions is always limited because
of uncertainties in the knowledge of the material properties and of the external
heat transfer. Hence the behavior of finite difference solutions for any finite size
of Ax and At would be of more interest for applications. A beginning of such
investigations has been made5.'2 and some of these results are applied to the
present problem.

Here a finite difference method of the explicit type is used and the proce-
dures of Refs. 5, 12 are followed. Replace in Eq. (1) the expressions aT/at,
32T/ax2 and T — Tf by (Ta, — T,, m)/ At, (rT, + m - — 2Tn, m)/
(Ax)2 and ()1 [h(T.r — T )]m [h(T1 — + 1 respectively, where T

is the temperature at x = mAx and t = nAt. Then the finite difference equations
for calculating the temperature of the skin becomes

1 + ph ip(Tn-1,
+ (1 — 2p — ph)T.,

ph(T.f, m Tf, m+1)1 (44)

where

xAt 

P (Ax)2

and
hAt 

2pcb

(44a)
Ph 


(x = k/ pc = thermal diffusivity). The truncation error of Eq. (44), defined

as E — 1)exact — n diff. method is of the order of magnitude

0 [(AX) 4 a(34x714 + [ 404  a8;Tati

using the relation At < (ajx)(Ax )2 which follows from the stability condition

for Eq. (44) and where  a < 1/[ 2 h(Ax)2/ (26k)] (Ref. 12). Auxiliary points 0
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and N 1 (see Fig. 9) are used for satisfying boundary conditions,12 so that the
boundaries lie midway between the pairs of points 0, 1 and X. N + 1 (see Fig. 9).
Then Eq. (3) becomes

Tø,m = Ti , m (45)

Put for 077 301, = At)(Tx + + I + TN, 1 - TN + I, - TN, yri

and (T)1, = (%)(T . + i + Tx + i,„a + TN, m +1+ TN, „).  In the latter
expression the temperature is also a mean between the times t = mAt and
t = (in +  1)At according to Ref. 12. With  (3 T/ax),, = (1/ A.0(T N —
— T .. „)” the finite difference equivalent to Eq. (4) becomes finally

1 	,
- ( 1 - PI - Pr)T N+1,m + (1 - + pr)T s,m

 
— (1 + pf)Tx,.+1+ 2p1(Ti,„, T f „HA)}

where

2Ar
Pr

and
LAT

Pf = 2R



for L and R see  Eq. (6); = (kAt)/pc112 and = Ax//i according to Eq. (5).
Because of symmetry the first boundary condition [Eq. (45)] has no truncation

error; for the second, Eq. (46), it is

o[(6,x)2 (an2T
ux2 N+1/2, m+1/2

This truncation error is of a higher order of mangitude than that for interior

points (see above). The skin in the example of section 5 is divided into N = 5
sections; then according to Ref. P2 the error in the temperatures of the skin

would at most be about 1% of T f T 1.As a time step At = 1 sec was chosen, a

value somewhat below the highest possible with respect to stability.10,12 The

temperatures obtained from the finite difference calculations for the examples

2 and 3 can be seen in Figs. 6 and 8 (marked as -1-). The maxinnim error is of

I/ This expression was chosen in order to use an existing program for an electronic calculator. A
similar expression, but referring to the time f = (m 34)Atwould be more consistent, hut would
not alter the order of magnitude of the truncation error given later.

0 1 2 3
0 • • • •

N+1

Fig. 9. Arrangement of auxiliary points Oand N 1 in finite-difference calculations.
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about the predicted size. Although these errors are acceptable for practical
purposes, a deeper insight into the finite difference method is obtained as
follows. Remember that the truncation error of Eq. (46) is higher than that
of Eq. (44). Hence in order to improve the accuracy of solutions with a small
number of sections in the skin, it would be more consistent to replace the
boundary condition [Eq. (46)1 by a corresponding expression with a smaller
truncation error rather than to increase the number of sections. Besides, this
way of improving accuracy is laborious, because a substantial increase in the
accuracy could only be obtained by doubling the number of sections and then
the computational work would increase by a factor 8, if maximum possible steps
are used.0 A finite difference approximation to Eq. (4) with a truncation error of

is as follows:

a5T
0x5 N+1, 2, mi

1 

T m+I

= 105(1 + pf) + 88
{[105 (1 — pf) — 88 pr[TN+1,,,,

p,

+ [420(1 — pf) + 68 prYT[— 210(1 — pf) + 36 prITN-1,

+ [84(1 — pf) — 20 pr
]
T N_2,.H 15(1 — Pi) + 4 PrtT.v-3,,,,

H 420(1 + pf) + 68 pr]T N, + [210(1 pf) + 36 Pr]

	

TN_1, m+1[— 84(1 + — 20 Pr1Tx-2,

[15(1 + pf) + 4 pr]Tx--3, 384p1(Tf,.+ Tf,

(48)

0[(Ax)4(°,57:
ux 


When Eq. (48) was used instead of Eq. (46) the results indicated in Figs. (i
and 8 by filled circles were obtained. The difference from the exact solutions

is now only about 0.2 percent and the increase in computational work was about
20 percent. To obtain these results with Eq. (46) by increasing the number of
sections would involve more than 6 times as much computational work.

Finally, an example is given which could not be solved by standard analytical
methods. Consider example 3 (Fig. 7), with allowance now being made for a

variation of h.  A typical variation of h would be ± 25 percent of h for an increase
in Tf Ti by an amount of 500°C, where h is a mean value. h is assumed to

increase linearly between 0.75h to I.25h within 4 seconds and thereafter to

fall by 0.025/t per sec. The variation of Tf and h are the same as previously

for example 3, Fig. 7. For the sake of simplicity the finite difference method

in its less complex form is used, with T N + 1 , „, + 1 being calculated according to
Eq. (46). The skin is again divided into 5 sections. The distribution of tempera-
ture and stresses are shown in Fig. 10. Buckling occurs now after 6.53 sec as

compared with a time of 7.45 sec for example 3, where a constant value h =
= 0.07 kcal/m2 sec °C was used.
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Fig. 10. As in Fig. 8, but variation of  it  taken into account.

SUMMARY

A skin and a reinforcing frame are on their outer surfaces exposed to aero-
dynamic heating; the temperatures across the thickness of the skin and through-
out the whole frame are assumed constant. An exact solution of the temperature
distribution has been obtained by analytical methods and it is applicable for
cases in which at least one of the two parameters of heat transfer, the heat
transfer coefficient, is assumed to be constant. Because of this and other limita-
tions of the analytical method, finite difference methods were also used and
found to give excellent results for typical examples, even if the skin was, for the
purpose of the difference calculations, divided into only five sections. The
accuracy of the finite difference method used was still further improved by
using higher order approximations in the boundary conditions. The stresses
and buckling conditions within the elastic range were calculated by well-known
methods.
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Discussor: H. de l'Estoile, Direction des Recherches et Moyens D'Essais

Je voudrais simplement l'intéret de la méthode des différences finies, qui est la seule
utilisable quand la structure présente des discontinutés, par example des joints rivés
ou collés.

A ce sujet, je suis heureux de constater que le Dr. Schuh vient de montrer que la
méthode des différences finies est en excellent accord avec la méthode analytique.

Author's reply to discussion:

The finite difference method for calculating temperatures was extended in Ref. 12
of this paper, so that even cases with discontinuities in the structure, such as glued
and riveted joints, can be treated.
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